Stabilizing the Energy Supply
Through the use of Decentralized Energy Storage in Consumer Electric Vehicles

Dan Calero, Dylan Matkowsky, Mujtaba Saighani, Mariam Ahmed, Maxim, Sean Fitzgerald, Ryan
Background Information

Electrical Grid
- birth in Industrial Revolution
- Supply and Demand Equilibrium
- Net metering
- Smart Grid

- Electrical Storage Dilemma
 - lithium ion batteries
 - centralized batteries?
Possibilities

Decentralized storage
- power to the consumers
- store large amounts of energy in numerous batteries

Electric Vehicles
- rising in popularity
- relatively large storage

Renewable Energy
- grid parity
- dispatchability/efficiency
- encouraged baseline renewable consumption
Part 1: Vehicle-To-Grid

- Vehicle-to-grid (V2G): allows owners of plug-in electric vehicles to send power stored in their car batteries back into the grid during times of high demand.

http://greenlivingguy.com/2011/05/03/infographic-vehicle-to-grid-v2g-power-storage-why-electric-vehicles-matter/
Part 1: Vehicle-To-Grid

- Off-peak Charging/ On-peak discharging: Difference in price is the customer’s profit (potential of $4,000/year/car).

Part 1: Vehicle-To-Grid

- Stabilization of the grid through V2G

http://www.evwind.es/2012/09/30/u-s-development-of-vehicle-to-grid-v2g-technology/24049
Part 2: Smart Grid 2.0

In order for V2G technology to be most successful you need a grid that is digitally automated...

- Smart Grid 2.0 = Distribution automation
 - Real-time meter readings
 - Automated control
 - Smart home automation
 - Distributed storage
The Edison Project

- Original idea was a symbiosis of Smart Grid 2.0 infrastructure and V2G tech into what we called “Smart Grid 2.1”

- Instead we found The Edison Project
 - Pilot project in Denmark attempting to support an increase of wind capacity to 50% by 2020.
 - Project lacked an interface for consumers that creates a marketplace for energy trading between hydro companies and V2G customers.
PowerSwap

- A virtual market for power trading between electrical utilities and V2G customers.

- A simple app accessible by anyone with an EV
 - Provides an easy to use interface to simplify energy auctioning.
 - The app asks the users a series of questions, and produces a corresponding minimum energy price that the user is willing to sell their excess EV energy for.
PowerSwap: How it works

- If the transaction occurs, the energy sold will be credited to the user's account and paid to the user in the form of utility credit or rollover credit.

- During peak or intermediate demand hours, hydro companies can place a maximum bid for stored EV energy from their customers.

- If the bid meets or exceeds the customer's minimum sale price, the app will ask if the customer is willing to sell their excess energy.
PowerSwap: Features

- **AI interface**
 - Decides if it is more economical to utilize stored energy or to sell it.
 - Learns your travel habits and energy usage habits to optimize the trading of electricity.

- **Smart Home/Appliance Integration**
 - Real time measurements of energy usage data.
 - Appliance prioritization and scheduling.

- **Localized power generation integration**
 - Can store power generated from solar panels or other renewables and sell back to the grid only when the price for electricity is the highest.

- **Smart battery usage**
 - Calculates minimum energy sale price based on battery wear and tear.

- **Energy security**
 - Reserves a specified amount of energy in the EV for the sake of emergencies at all times.
Target Market
Demographic

- Location
 - Place where on-peak and off-peak electricity difference is high
 - Marketplace for electric vehicles is growing or has the potential to grow
 - Progressive cities with an infrastructure for vehicle to grid technology

- Consumers
 - Environmentally conscience individuals who own electrical vehicles.
 - Electrical vehicle ownership projected to rise exponentially with time.
Existing Governmental Policy

- Energy Policy Act of 2005
 - Promotional subsidies for producing renewable energy
 - Providing incentives for consumers as well as access to the technology needed for the implementation of our idea
Possible Governmental Policy

- Bridge the gap between the electric companies and the consumers
- Government funding for the app
- Smart meters
 - Installation
 - Development
Finances: Upfront costs for Consumer

- No upfront costs; no installation costs
- Costs allocated to homeowners utility bills instead
Finances: On-going Costs
Consumer

- Save money on household energy bills
- By using energy efficiently
- And hydro companies saving money
Finances: Supplier

- Smart meters will help suppliers save money
- Meter reads will no longer be needed
Pros

- Good way to promote electric cars
- Less CO2
- Promotes the upgrading of current outdated grid systems to new smart grid infrastructure.
- Stabilize the grid
- Future price of batteries expected to be lower while quality will increase
- Use battery as backup power for residential homes power outages
Cons

- Better to use partial discharge for the battery of the car
- Power loss through inefficiency of the transmission of electricity
- Power loss through inefficiency of the battery (heat)
- Electric Cars are currently expensive
Conclusion

- We were looking for an idea that promotes renewable energy and sustainability through a decentralized initiative.

- Our application, PowerSwap, will empower consumers to become more conscious of their energy usage and to contribute to their community’s grid infrastructure.

- Ultimately the ability to change our energy systems for the better lies in the hands of individuals.
References

- www.epa.gov